Lyapunov stability in dynamical systems

James Kennington

Department of Mathematics

April 25, 2014

Dynamical System Framework

• A dynamical system is a system of ordinary differential equations.

$$\vec{x}' = f(t, \vec{x}), \text{ where } \vec{x} \in \mathbb{R}^{1+n}$$

Dynamical System Framework

• A dynamical system is a system of ordinary differential equations.

$$\vec{x}' = f(t, \vec{x}), \text{ where } \vec{x} \in \mathbb{R}^{1+n}$$

• $\Omega = \operatorname{Dom}(f) \subset \mathbb{R}$

Dynamical System Framework

• A dynamical system is a system of ordinary differential equations.

$$\vec{x}' = f(t, \vec{x}), \text{ where } \vec{x} \in \mathbb{R}^{1+n}$$

- $\Omega = \operatorname{Dom}(f) \subset \mathbb{R}$
- Phase space $\mathcal{O} \subset \mathbb{R}^n$ contains all of the possible states $\{\vec{x}_i\}$ of a dynamical system.

Picard Existence General Argument

• Transform ODE system into integral equations

$$\vec{x}(t) = \vec{x}_0 + \int_{t_0}^t f(s, x(s)) \, ds$$

Picard Existence General Argument

• Transform ODE system into integral equations

$$\vec{x}(t) = \vec{x}_0 + \int_{t_0}^t f(s, x(s)) \, ds$$

• Banach Contraction Mapping Principle

Picard Existence General Argument

• Transform ODE system into integral equations

$$\vec{x}(t) = \vec{x}_0 + \int_{t_0}^t f(s, x(s)) \, ds$$

• Banach Contraction Mapping Principle

• Extend contraction to find maximum interval of existence

Picard Existence Theorem

• Theorem: Let $K \subset \Omega$ be a compact neighborhood of the initial conditions (t_0, \vec{x}_0) . If f is a continuous function that is locally Lipschitz, then $\exists \delta > 0$ such that that for every $(t_0, \vec{x}_0) K$,

$$|f(t, \vec{x}_1) - f(t, \vec{x}_2)| \le L |\vec{x}_1 - \vec{x}_2|, \forall \vec{x}_1, \vec{x}_2 \in U$$

Picard Existence Theorem

• Theorem: Let $K \subset \Omega$ be a compact neighborhood of the initial conditions (t_0, \vec{x}_0) . If f is a continuous function that is locally Lipschitz, then $\exists \delta > 0$ such that that for every $(t_0, \vec{x}_0) K$,

$$|f(t, \vec{x}_1) - f(t, \vec{x}_2)| \le L |\vec{x}_1 - \vec{x}_2|, \forall \vec{x}_1, \vec{x}_2 \in U$$

 \bullet Continuity of f gives existence of solutions.

Picard Existence Theorem

• Theorem: Let $K \subset \Omega$ be a compact neighborhood of the initial conditions (t_0, \vec{x}_0) . If f is a continuous function that is locally Lipschitz, then $\exists \delta > 0$ such that that for every $(t_0, \vec{x}_0) K$,

$$|f(t, \vec{x}_1) - f(t, \vec{x}_2)| \le L |\vec{x}_1 - \vec{x}_2|, \forall \vec{x}_1, \vec{x}_2 \in U$$

- \bullet Continuity of f gives existence of solutions.
- \bullet Locally Lipschitz condition of f gives uniqueness of solutions.

• Stability Conditions:

- Stability Conditions:
 - Unstable

- Stability Conditions:
 - Unstable
 - Stable

- Stability Conditions:
 - Unstable
 - Stable
 - Asymptotically Stable

- Stability Conditions:
 - Unstable
 - Stable
 - Asymptotically Stable
- Unstable

- Stability Conditions:
 - Unstable
 - Stable
 - Asymptotically Stable
- Unstable
- Stable

- Stability Conditions:
 - Unstable
 - Stable
 - Asymptotically Stable
- Unstable
- Stable
- Asymptotically Stable

• Conditions:

- Conditions:
 - Systems must be autonomous

- Conditions:
 - Systems must be autonomous
 - Critical points must be hyperbolic

- Conditions:
 - Systems must be autonomous
 - Critical points must be hyperbolic
 - Critical points must be isolated

• Note: Still autonomous system

- Note: Still autonomous system
- In a system where Hartman Grobman breaks down, Lyapunov still allows qualitative statements about stability of system near critical points

- Note: Still autonomous system
- In a system where Hartman Grobman breaks down, Lyapunov still allows qualitative statements about stability of system near critical points
- If $\exists E: K \to \mathbb{R}$ that satisfies the following conditions:

- Note: Still autonomous system
- In a system where Hartman Grobman breaks down, Lyapunov still allows qualitative statements about stability of system near critical points
- If $\exists E: K \to \mathbb{R}$ that satisfies the following conditions:
 - E is C^1 in K

- Note: Still autonomous system
- In a system where Hartman Grobman breaks down, Lyapunov still allows qualitative statements about stability of system near critical points
- If $\exists E: K \to \mathbb{R}$ that satisfies the following conditions:
 - $\bullet \ E \text{ is } C^1 \text{ in } \mathsf{K}$
 - $E(\vec{x}) > 0, \ \forall \vec{x} \in K \smallsetminus \{\vec{x}_{crit}\}$

- Note: Still autonomous system
- In a system where Hartman Grobman breaks down, Lyapunov still allows qualitative statements about stability of system near critical points
- If $\exists E: K \to \mathbb{R}$ that satisfies the following conditions:
 - $\bullet \ E \text{ is } C^1 \text{ in } \mathsf{K}$
 - $E(\vec{x}) > 0, \ \forall \vec{x} \in K \smallsetminus {\vec{x}_{crit}}$
 - $DE(\vec{x}) f(\vec{x}) \le 0, \ \forall \vec{x} \in K \smallsetminus \{\vec{x}_{crit}\}\$

Lyapunov Stability: Example

• Example:

$$\begin{array}{rcl} \dot{x} &=& -2y^3 \\ \dot{y} &=& x-3y^3 \end{array}$$