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Dynamical System Framework

A dynamical system is a system of ordinary differential equations.

~x ′ = f(t, ~x), where ~x ∈ R1+n

Ω = Dom(f) ⊂ R
Phase space O ⊂ Rn contains all of the possible states {~xi} of a
dynamical system.
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Picard Existence General Argument

Transform ODE system into integral equations

~x(t) = ~x0 +

∫ t

t0

f (s, x (s)) ds

Banach Contraction Mapping Principle

Extend contraction to find maximum interval of existence
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Picard Existence Theorem

Theorem: Let K ⊂ Ω be a compact neighborhood of the initial conditions
(t0, ~x0). If f is a continuous function that is locally Lipschitz, then
∃δ > 0 such that that for every (t0, ~x0) K,

|f(t, ~x1)− f(t, ~x2)| ≤ L |~x1 − ~x2| ,∀~x1, ~x2 ∈ U

Continuity of f gives existence of solutions.

Locally Lipschitz condition of f gives uniqueness of solutions.
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Stability and Behavior

Stability Conditions:

Unstable
Stable
Asymptotically Stable
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Asymptotically Stable
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Hartman-Grobman

Conditions:

Systems must be autonomous
Critical points must be hyperbolic
Critical points must be isolated
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Lyapunov Stability

Note: Still autonomous system

In a system where Hartman Grobman breaks down, Lyapunov still allows
qualitative statements about stability of system near critical points
If ∃ E : K → R that satisfies the following conditions:

E is C1 in K
E (~x) > 0, ∀~x ∈ K r {~xcrit}
DE (~x) f (~x) ≤ 0, ∀~x ∈ K r {~xcrit}
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Lyapunov Stability: Example

Example:
ẋ = −2y3

ẏ = x− 3y3
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