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Dynamical System Framework TEXAS

@ A dynamical system is a system of ordinary differential equations.

Z' = f(t,7), where & € R'*"
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Dynamical System Framework TEXAS

@ A dynamical system is a system of ordinary differential equations.
Z' = f(t,7), where & € R'*"

o O =Dom(f)CR

o Phase space O C R™ contains all of the possible states {Z;} of a
dynamical system.
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Picard Existence General Argument TEXAS

o Transform ODE system into integral equations

Z(t) =20+ [ f(s,x(s))ds

to
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Picard Existence General Argument TEXAS

o Transform ODE system into integral equations

Zt)=2Zo+ | f(s,x(s))ds

to

o Banach Contraction Mapping Principle

o Extend contraction to find maximum interval of existence
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Picard Existence Theorem TEXAS

o Theorem: Let K C 2 be a compact neighborhood of the initial conditions
(to, Zp). If f is a continuous function that is locally Lipschitz, then
30 > 0 such that that for every (¢, ) K,

‘f(t,fl) — f(t,fg” <L ‘fl — fg| ,Vfl,fg eU
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o Theorem: Let K C 2 be a compact neighborhood of the initial conditions
(to, Zp). If f is a continuous function that is locally Lipschitz, then
30 > 0 such that that for every (¢, ) K,

‘f(t,fl) — f(t,fg)| <L ‘fl — fQ| ,Vfl,fg eU

o Continuity of f gives existence of solutions.

o Locally Lipschitz condition of f gives uniqueness of solutions.
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Stability and Behavior rere

o Stability Conditions:
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AT AUSTIN

o Conditions:
o Systems must be autonomous
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Hartman-Grobman s

AT AUSTIN

o Conditions:

o Systems must be autonomous
o Critical points must be hyperbolic
o Critical points must be isolated
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Lyapunov Stability e

o Note: Still autonomous system
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Lyapunov Stability e

o Note: Still autonomous system

@ In a system where Hartman Grobman breaks down, Lyapunov still allows
qualitative statements about stability of system near critical points
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@ In a system where Hartman Grobman breaks down, Lyapunov still allows
qualitative statements about stability of system near critical points
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Lyapunov Stability e

o Note: Still autonomous system

@ In a system where Hartman Grobman breaks down, Lyapunov still allows
qualitative statements about stability of system near critical points
o If 3 F: K — R that satisfies the following conditions:
o EisC!inK
o E(¥) >0, Vie K~ A{Zcit}
o DE(Z) f(Z) <0, V&€ K~ {Zcrit}
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Lyapunov Stability: Example

o Example:
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